7805 Pin Assignment Table

L7805 – 5V Voltage Regulator.

The L7805 is a simple 3 pin voltage regulator. It takes in an input voltage and produces a constant 5V output.

Pin Out:

Pin 1=Voltage in (7V – 35V)
Pin 2=Ground (0V)
Pin 3=Voltage out (5V)


Typical Circuit


Output voltage= 5V
Max input voltage= 35V
Max output current= 1A
Quiescent (standby) current= 5mA
Voltage drop out @ 1A= 2V (this means that at least a 7V input will be required to maintain the 5V output)


Download a pdf version of this page here

Learn more about the author read more »

©Kitronik Ltd – You may print this page & link to it, but must not copy the page or part thereof without Kitronik's prior written consent.

← Previous PostNext Post →

Voltage sources in a circuit may have fluctuations resulting in not providing fixed voltage outputs. A voltage regulator IC maintains the output voltage at a constant value. 7805 IC, a member of 78xx series of fixed linear voltage regulators used to maintain such fluctuations, is a popular voltage regulator integrated circuit (IC). The xx in 78xx indicates the output voltage it provides. 7805 IC provides +5 volts regulated power supply with provisions to add a heat sink.

7805 IC Rating

  • Input voltage range 7V- 35V
  • Current rating Ic = 1A
  • Output voltage range   VMax=5.2V ,VMin=4.8V

Pin Details of 7805 IC

Pin No.PinFunctionDescription
1INPUTInput voltage (7V-35V)In this pin of the IC positive unregulated voltage is given in regulation.
2GROUNDGround (0V)In this pin where the ground is given. This pin is neutral for equally the input and output.
3OUTPUTRegulated output; 5V (4.8V-5.2V)The output of the regulated 5V volt is taken out at this pin of the IC regulator.


As you may have noticed, there is a significant difference between the input voltage & the output voltage of the voltage regulator. This difference between the input and output voltage is released as heat. The greater the difference between the input and output voltage, more the heat generated. If the regulator does not have a heat sink to dissipate this heat, it can get destroyed and malfunction. Hence, it is advisable to limit the voltage to a maximum of 2-3 volts above the output voltage. So, we now have 2 options. Either design your circuit so that the input voltage going into the regulator is limited to 2-3 volts above the output regulated voltage or place an appropriate heatsink, that can efficiently dissipate heat.

What to do with all the heat?

7805 is not very efficient and has drop-out voltage problems. A lot of energy is wasted in the form of heat. If you are going to be using a heatsink, better calculate the heatsink size properly. The below formula should help in determining appropriate heatsink size for such applications.

Heat generated = (input voltage – 5) x output current

If we have a system with input 15 volts and output current required is .5 amperes, we have:
(15 – 5) x 0.5 = 10×0.5 =5W;

5W energy is being wasted as heat, hence an appropriate heatsink is required to disperse this heat. On the other hand, energy actually being used is:

(5 x 0.5Amp) = 2.5W.

So twice the energy, that is actually utilized is wasted. On the other hand, if 9V is given as input at the same amount of load:

(9-5) x 0.5 = 2W

2W energy will be wasted as heat.

What we learn: Higher the input voltage, less efficient your 7805 will be.

An estimated efficient input voltage would be at about 7.5V.

Other circuit components?

If your voltage regulator is situated more than 25cm (10 inches) from the power supply, capacitors are needed to filter residual AC noise. Voltage regulators work efficiently on clean DC signal being fed. The bypass capacitors help reduce AC ripple. Essentially, they short AC noise from the voltage signal and allow only DC voltage into the regulator. The two capacitors are not necessarily required and can be omitted if you are not concerned about line noise.

However, for a mobile phone charger or logic assessment, you require a nice clean DC line. Capacitors will be beneficial in this case as they are good at maximizing voltage regulation. The values of capacitors can also be changed slightly.

Let’s take a look at what makes the IC tick.

Schematic of 7805 IC

The heart of the 7805 IC is a transistor (Q16) that controls the current between the input and output and thus controlling the output voltage. The bandgap reference (yellow) keeps the voltage stable. It takes the scaled output voltage as input (Q1 and Q6) and provides an error signal (to Q7) for indication if the voltage is too high or low. The key task of the bandgap is to provide a stable and accurate reference, even as the chip’s temperature changes.

The error signal from the bandgap reference is amplified by the error amplifier (orange). This amplified signal controls the output transistor through Q15. This closes the negative feedback loop controlling the output voltage. The startup circuit (green) provides initial current to the bandgap circuit, so it doesn’t get stuck in an “off” state. The circuit in purple provides protection against overheating (Q13), excessive input voltage (Q19) and excessive output current (Q14). These circuits reduce the output current or shutdown the regulator, protecting it from damage in case of a fault. The voltage divider (blue) scales down the voltage on the output pin for use by the bandgap reference.

Scaling the output

The 7805’s scaled output provides the input voltage (Vin) to the bandgap reference and the bandgap provides an error signal as the output. The 7805’s bandgap circuit removes the feedback loop that exists inside a traditional bandgap reference. Instead, the entire chip becomes the feedback loop.

If the output voltage is correct (5V), then the voltage divider provides 3.75V at Vin. Any change in output voltage propagates through Q6 and R7, causing the voltage at the base of Q7 to rise or fall accordingly. This change is amplified by Q7 and Q8, generating the error output. The error output, in turn, decreases or increases the current through the output transistor. The negative feedback loop adjusts the output voltage until it is correct.

Application areas for 7805 IC

7805 IC is used in a wide range of circuits. The major ones being:

  • Fixed-Output Regulator
  • Positive Regulator in Negative Configuration
  • Adjustable Output Regulator
  • Current Regulator
  • Adjustable DC Voltage Regulator
  • Regulated Dual-Supply
  • Output Polarity-Reversal-Protection Circuit
  • Reverse bias projection Circuit

7805 IC also finds usage in building circuits for inductance meter, phone charger, portable CD player, infrared remote control extension and UPS power supply circuits.

More detailed information about 7805 IC can be found in the datasheet.

The slideshow below also highlights some points with voltage regulators. Have a look.

Voltage regulator from niiraz

Ankita KS

0 Thoughts to “7805 Pin Assignment Table

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *